Giải bài 14 trang 13 – SGK Toán lớp 8 tập 2
Số nào trong ba số \(-1,\, 2\) và \(-3\) nghiệm đúng mỗi phương trình sau?
\(|x| = x\,\,\,\,(1)\)
\( x^2 + 5x + 6 = 0 \,\,\,\,\,\,(2)\)
\( \dfrac{6}{1 - x} = x + 4 \,\,\,\,\,\, (3)\)
Hướng dẫn:
Thay \(x = -1;\, 2\) và \(-3\) lần lượt vào từng vế của mỗi phương trình, tính giá trị của chúng rồi so sánh giá trị hai vế.
Ta nhận thấy:
+ \(x = -1\) là nghiệm của phương trình \(\dfrac{6}{1 - x} = x + 4\)
Thật vậy:
\( VT = \dfrac{6}{1 - x} = \dfrac{6}{1 - (-1)} = \dfrac{6}{1 + 1} = \dfrac{6}{2} = 3\)
\( VP = x + 4 = (-1) + 4 = 3\)
Vậy \(VT = VP\)
+ \(x = 2\) là nghiệm của phương trình \(|x| = x\)
Thật vậy:
\( VT = |x| = |2| = 2\)
\( VP = x = 2\)
Vậy \(VT = VP\)
+ \(x = -3\) là nghiệm của phương trình \(x^2 + 5x + 6 = 0\)
Thật vậy:
\( VT = x^2 + 5x + 6 = (-3)^2 + 5.(-3) + 6 = 9 - 15 + 6 = 0 = VP\)