Giải bài 41 trang 53 – SGK Toán lớp 8 tập 2

Giải các bất phương trình:
a) \(\dfrac{2 - x}{4} < 5;\)
b) \(3 \leq \dfrac{2x + 3}{5} ;\)
c) \(\dfrac{4x - 5}{3} > \dfrac{7 - x}{5} ;\)
d) \(\dfrac{2x + 3}{-4} \geq \dfrac{4 - x}{-3}.\)

Lời giải:

a) \(\dfrac{2 - x}{4} < 5\)
\(\Leftrightarrow 2 - x < 5.4\)
\(\Leftrightarrow 2 - x < 20\)
\(\Leftrightarrow -x < 20 - 2\)
\(\Leftrightarrow -x < 18\)
\(\Leftrightarrow x > -18\)
Vậy nghiệm của bất phương trình là \(x > -18\)
b) \(3 \leq \dfrac{2x + 3}{5} \)
\(\Leftrightarrow 3. 5 \leq 2x + 3\)
\(\Leftrightarrow 15 \leq 2x + 3\)
\(\Leftrightarrow 15 - 3 \leq 2x \)
\(\Leftrightarrow 12 \leq 2x\)
\(\Leftrightarrow 6 \leq x\)
Hay \(x \geq 6\)
Vậy bất phương trình có nghiệm là \(x \geq 6\)
c) \(\dfrac{4x - 5}{3} > \dfrac{7 - x}{5} \)
\(\Leftrightarrow 5(4x - 5) > (7 - x)3\)
\(\Leftrightarrow 20x - 25 > 21 - 3x\)
\(\Leftrightarrow 20x + 3x > 21 + 25\)
\(\Leftrightarrow 23x > 46\)
\(\Leftrightarrow x > 2\)
Vậy tập nghiệm của bất phương trình là \(x > 2\)
d) \(\dfrac{2x + 3}{-4} \geq \dfrac{4 - x}{-3}\)
\(\Leftrightarrow -3(2x + 3) \geq -4(4 - x)\)
\(\Leftrightarrow -6x - 9 \geq -16 + 4x\)
\(\Leftrightarrow -6x - 4x \geq -16 + 9\)
\(\Leftrightarrow -10x \geq -7\)
\(\Leftrightarrow x \leq \dfrac{7}{10}\)
Vậy bất phương trình có nghiệm là \(x \leq \dfrac{7}{10}\)

Ghi nhớ:
Quy tắc chuyển vế:
Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu hạng tử đó
Quy tắc nhân:
Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
- Giữ nguyên chiều của bất phương trình nếu số đó dương;
- Đổi chiều bất phương trình nếu số đó âm.
Xem video bài giảng và làm thêm bài luyện tập về bài học này ở đây để học tốt hơn.
Mục lục Chương 4: Bất phương trình bậc nhất một ẩn theo chương Chương 4: Bất phương trình bậc nhất một ẩn - Đại số 8