Giải bài 7 trang 98 – SGK môn Hình học lớp 11
Cho S là diện tích của tam giác ABC. Chứng minh rằng \(S=\dfrac{1}{2}\sqrt{{{\overrightarrow{AB}}^{2}}.{{\overrightarrow{AC}}^{2}}-{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}\)
Ta có: \({{S}_{ABC}}=\dfrac{1}{2}AB.AC.\sin \widehat{A}=\dfrac{1}{2}.AB.AC.\sqrt{1-{{\cos }^{2}}\widehat{A}} \)
Ta lại có: \(\cos \widehat{A}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}\Rightarrow {{\cos }^{2}}\widehat{A}=\dfrac{{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}{|\overrightarrow{AB}{{|}^{2}}|\overrightarrow{AC}{{|}^{2}}} \)
Nên
\(\begin{aligned} & 1-{{\cos }^{2}}\widehat{A}=1-\dfrac{{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}}=\dfrac{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}-{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}} \\ & \Rightarrow \sqrt{1-{{\cos }^{2}}\widehat{A}}=\sqrt{\dfrac{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}-{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}}} \\ \end{aligned} \)
Do đó:
\( \begin{aligned} & {{S}_{ABC}}=\dfrac{1}{2}AB.AC.\sqrt{\dfrac{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}-{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}}} \\ & =\dfrac{1}{2}.AB.AC.\dfrac{\sqrt{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}-{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}}}{AB.AC} \\ & =\dfrac{1}{2}\sqrt{{{\left| \overrightarrow{AB} \right|}^{2}}{{\left| \overrightarrow{AC} \right|}^{2}}-{{\left( \overrightarrow{AB}.\overrightarrow{AC} \right)}^{2}}} \\ \end{aligned}\)
Ghi nhớ:
\({{S}_{ABC}}=\dfrac{1}{2}AB.AC.\sin \widehat{A}\)