Giải bài 7 trang 145 SGK giải tích nâng cao 12

Tìm nguyên hàm của các hàm số sau:

a) \(f\left( x \right)=3x\sqrt{7-3{{x}^{2}}};\)                               b) \(f\left( x \right)=\cos \left( 3x+4 \right);\)

c) \(f\left( x \right)=\dfrac{1}{{{\cos }^{2}}\left( 3x+2 \right)};\)                            d) \(f\left( x \right)={{\sin }^{5}}\dfrac{x}{3}\cos \dfrac{x}{3}.\)

Lời giải:

a) \(\int{3x\sqrt{7-3{{x}^{2}}}dx}\)

Đặt \(t=7-3{{x}^{2}}\Leftrightarrow dt=-6xdx\Leftrightarrow 3xdx=-\dfrac{dt}{2} \)

\( \begin{aligned} \Rightarrow \int{3x\sqrt{7-3{{x}^{2}}}dx}&=-\dfrac{1}{2}\int{\sqrt{t}dt}=-\dfrac{1}{3}\sqrt{{{t}^{3}}}+C \\ & =-\dfrac{1}{3}\sqrt{7-3{{x}^{2}}}+C \\ \end{aligned} \)

b) \(\int{\cos \left( 3x+4 \right)dx} \)

Đặt \(t=3x+4\Leftrightarrow dt=3dx\Leftrightarrow dx=\dfrac{dt}{3}\)

\(\begin{aligned} \Rightarrow \int{\cos \left( 3x+4 \right)dx}&=\dfrac{1}{3}\int{\cos tdt}=\dfrac{\sin t}{3}+C \\ & =\dfrac{\sin \left( 3x+4 \right)}{3}+C \\ \end{aligned} \)

c) \(\int{\dfrac{1}{{{\cos }^{2}}\left( 3x+2 \right)}dx} \)

Đặt \(t=3x+2\Leftrightarrow dt=3dx\Leftrightarrow dx=\dfrac{dt}{3}\)

\( \begin{aligned} \Rightarrow \int{\dfrac{1}{{{\cos }^{2}}\left( 3x+2 \right)}dx}&=\dfrac{1}{3}\int{\dfrac{dt}{{{\cos }^{2}}t}}=\dfrac{\tan t}{3}+C \\ & =\dfrac{\tan \left( 3x+2 \right)}{3}+C \\ \end{aligned} \)

d) \(\int{{{\sin }^{5}}\dfrac{x}{3}\cos \dfrac{x}{3}dx}\)

Đặt \(t=\sin \dfrac{x}{3}\Leftrightarrow dt=\dfrac{1}{3}\cos \dfrac{x}{3}dx\Leftrightarrow 3dt=\cos \dfrac{x}{3}dx\)

\( \begin{aligned} \Rightarrow \int{{{\sin }^{5}}\dfrac{x}{3}\cos \dfrac{x}{3}dx}&=3\int{{{t}^{5}}dt}=\dfrac{{{t}^{6}}}{2}+C \\ & =\dfrac{1}{2}{{\sin }^{6}}\dfrac{x}{3}+C \\ \end{aligned} \)

Tổng quát

\(\int{\cos \left( ax+b \right)dx}=\dfrac{\sin \left( ax+b \right)}{a}+C\)

\(\int{\dfrac{1}{{{\cos }^{2}}\left( ax+b \right)}dx}=\dfrac{\tan \left( ax+b \right)}{a}+C\)