Giải bài 6 trang 17 – Bài 3 - SGK môn Vật lý lớp 12

Một con lắc đơn được thả không vận tốc đầu từ li độ góc \( {{\alpha }_{0}} \). Khi con lắc đi qua vị trí cân bằng thì tốc độ của quả cầu con lắc là bao nhiêu ?
A. \( \sqrt{gl\left( 1-\cos {{\alpha }_{0}} \right)} \)B. \( \sqrt{2gl\cos {{\alpha }_{0}}} \)
C. \( \sqrt{2gl\left( 1-\cos {{\alpha }_{0}} \right)} \)D. \( \sqrt{gl\cos {{\alpha }_{0}}} \)
Lời giải:
- Chọn C. \( \sqrt{2gl\left( 1-\cos {{\alpha }_{0}} \right)} \)
Dùng định luật bảo toàn cơ năng, tại biên và tại vị trí cân bằng.
Tại biên \( {{\text{W}}_{t}}=mgl\left( 1-\cos {{\alpha }_{0}} \right) \)
Tại vị trí cân bằng : \( {{\text{W}}_{d}}=\dfrac{1}{2}m{{v}^{2}} \)
-Định luật bảo toàn cơ năng:
\( \dfrac{1}{2}m{{v}^{2}}=mgl\left( 1-\cos {{\alpha }_{0}} \right) \)\(\Rightarrow v=\sqrt{2gl\left( 1-\cos {{\alpha }_{0}} \right)} \)   
 

Ghi nhớ:

- Khi dao động nhỏ \( \left( \sin \alpha \approx \alpha \left( rad \right) \right) \), con lắc đơn dao động điều hòa với chu kì:

\( T=2\pi \sqrt{\dfrac{l}{g}} \)

- Động năng của con lắc:

\( {{W}_{\text{đ}}}=\dfrac{1}{2}m{{v}^{2}} \)  

- Thế năng của con đơn ở li độ góc \(\alpha:\) 

\( {{W}_{t}}=mgl\left( 1-\cos \alpha \right) \) (mốc tính thế năng ở vị trí cân bằng)

- Cơ năng của con lắc đơn được bảo toàn nếu bỏ qua mọi ma sát:

\( W=\dfrac{1}{2}m{{v}^{2}}+mgl\left( 1-\cos \alpha \right)=\text{ hằng số} \)

Mục lục Chương 1: Dao động cơ theo chương Chương 1: Dao động cơ - Giải bài tập SGK Vật lý 12