Giải bài 2.49 trang 125 - SBT Giải tích lớp 12

Giải các phương trình lôgarit sau:

\(\begin{align} & a){{\log }_{2}}\left( {{2}^{x}}+1 \right).{{\log }_{2}}\left( {{2}^{x+1}}+2 \right)=2 \\ & b)\,{{x}^{\log 9}}+{{9}^{\log x}}=6 \\ & c){{x}^{3{{\log }^{3}}x-\frac{2}{3}\log x}}=100\sqrt[3]{10} \\ & d)1+2{{\log }_{x+2}}5={{\log }_{5}}\left( x+2 \right) \\ \end{align} \)

Lời giải:

Hướng dẫn:

Biến đổi phương trình về phương trình ẩn \(\log_a f(x)\)

Gợi ý:

b) \(x^{\log 9}=9^{\log x}\)

a)

\(\begin{aligned} & {{\log }_{2}}\left( {{2}^{x}}+1 \right).{{\log }_{2}}\left( {{2}^{x+1}}+2 \right)=2 \\ & \Leftrightarrow {{\log }_{2}}\left( {{2}^{x}}+1 \right).\left[ 1+{{\log }_{2}}\left( {{2}^{x}}+1 \right) \right]=2 \\ & \Leftrightarrow \log _{2}^{2}\left( {{2}^{x}}+1 \right)+\log \left( {{2}^{x}}+1 \right)-2=0 \\ & \Leftrightarrow \left[ \begin{aligned} & {{\log }_{2}}\left( {{2}^{x}}+1 \right)=1 \\ & {{\log }_{2}}\left( {{2}^{x}}+1 \right)=-2 \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & {{2}^{x}}+1=2 \\ & {{2}^{x}}+1=\dfrac{1}{4} \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & {{2}^{x}}=1 \\ & {{2}^{x}}=-\dfrac{3}{4}\,\,\,\,\left( \text{loại} \right) \\ \end{aligned} \right.\Leftrightarrow x=0 \\ \end{aligned} \)

b)

Điều kiện xác định: \(x> 0\)

\(\begin{aligned} & \log \left( {{x}^{\log 9}} \right)=\log 9.\log x=\log \left( {{9}^{\log x}} \right) \\ & \Rightarrow {{x}^{\log 9}}={{9}^{\log x}} \\ \end{aligned} \)

Do đó, ta có:

\(\begin{aligned} & {{x}^{\log 9}}+{{9}^{\log x}}=6 \\ & \Leftrightarrow 2.{{x}^{\log 9}}=6 \\ & \Leftrightarrow {{x}^{\log 9}}=3 \\ & \Leftrightarrow \log 9.\log x=\log 3 \\ & \Leftrightarrow \log x=\dfrac{\log 3}{\log 9} \\ & \Leftrightarrow \log x=\dfrac{1}{2} \\ & \Leftrightarrow x=\sqrt{10} \\ \end{aligned}\)

c)

Điều kiện xác định: \(x> 0\)

\(\begin{aligned} & {{x}^{3{{\log }^{3}}x-\frac{2}{3}\log x}}=100\sqrt[3]{10} \\ & \Leftrightarrow \left( 3{{\log }^{3}}x-\dfrac{2}{3}\log x \right)\log x=2+\dfrac{1}{3} \\ & \Leftrightarrow 3{{\log }^{4}}x-\dfrac{2}{3}{{\log }^{2}}x=\dfrac{7}{3} \\ & \Leftrightarrow 9{{\log }^{4}}x-2{{\log }^{2}}x-7=0 \\ & \Leftrightarrow \left[ \begin{aligned} & {{\log }^{2}}x=1 \\ & {{\log }^{2}}x=-1\,\,\,\left( \text{loại} \right) \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & \log x=1 \\ & \log x=-1 \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & x=10 \\ & x=\dfrac{1}{10} \\ \end{aligned} \right. \\ \end{aligned} \)

 d)

Điều kiện: \(x> -2\)

\(\begin{aligned} & 1+2{{\log }_{x+2}}5={{\log }_{5}}\left( x+2 \right) \\ & \Leftrightarrow 1+2.\dfrac{1}{{{\log }_{5}}\left( x+2 \right)}={{\log }_{5}}\left( x+2 \right) \\ & \Leftrightarrow \log _{5}^{2}\left( x+2 \right)-{{\log }_{5}}\left( x+2 \right)-2=0 \\ & \Leftrightarrow \left[ \begin{aligned} & {{\log }_{5}}\left( x+2 \right)=-1 \\ & {{\log }_{5}}\left( x+2 \right)=2 \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & x+2=\dfrac{1}{5} \\ & x+2=25 \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & x=-\dfrac{9}{5} \\ & x=23 \\ \end{aligned} \right. \\ \end{aligned} \)