Giải bài 2.59 trang 131 - SBT Giải tích lớp 12

Giải các bất phương trình mũ sau :

\(\begin{align} & a)\,{{3}^{\left| x-2 \right|}}<9; \\ & b)\,{{4}^{\left| x+1 \right|}}>16; \\ & c)\,{{2}^{-{{x}^{2}}+3x}}<4; \\ & d)\,{{\left( \dfrac{7}{9} \right)}^{2{{x}^{2}}-3x}}\ge \dfrac{9}{7}; \\ & e)\,{{11}^{\sqrt{x+6}}}\ge {{11}^{x}}; \\ & g)\,{{2}^{2x-1}}+{{2}^{2x-2}}+{{2}^{2x-3}}\ge 448; \\ & h)\,{{16}^{x}}-{{4}^{x}}-6\le 0; \\ & i)\dfrac{{{3}^{x}}}{{{3}^{x}}-2}<3. \\ \end{align} \)

Lời giải:
Hướng dẫn: Xem lại các bất đẳng thức mũ cơ bản.
 
\(\begin{aligned} & a) \\ & {{3}^{\left| x-2 \right|}}<9={{3}^{2}} \\ & \Leftrightarrow \left| x-2 \right|<2 \\ & \Leftrightarrow -2< x-2<2 \\ & \Leftrightarrow 0< x<4 \\ \end{aligned} \)
 
\(\begin{aligned} & b) \\ & {{4}^{\left| x+1 \right|}}>16={{4}^{2}} \\ & \Leftrightarrow \left| x+1 \right|>2 \\ & \Leftrightarrow \left[ \begin{aligned} & x+1<-2 \\ & x+1>2 \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & x<-3 \\ & x>1 \\ \end{aligned} \right. \\ \end{aligned} \)
\( \begin{aligned} & c) \\ & {{2}^{-{{x}^{2}}+3x}}<4={{2}^{2}} \\ & \Leftrightarrow -{{x}^{2}}+3x<2 \\ & \Leftrightarrow -{{x}^{2}}+3x-2<0 \\ & \Leftrightarrow \left[ \begin{aligned} & x<1 \\ & x>2 \\ \end{aligned} \right. \\ \end{aligned} \)
\( \begin{aligned} & d) \\ & {{\left( \dfrac{7}{9} \right)}^{2{{x}^{2}}-3x}}\ge \dfrac{9}{7}={{\left( \dfrac{7}{9} \right)}^{-1}} \\ & \Leftrightarrow 2{{x}^{2}}-3x\le -1 \\ & \Leftrightarrow 2{{x}^{2}}-3x+1\le 0 \\ & \Leftrightarrow x\in \left[ \dfrac{1}{2};1 \right] \\ \end{aligned} \)
 
\(\begin{aligned} & e)\,x\ge -6 \\ & {{11}^{\sqrt{x+6}}}\ge {{11}^{x}} \\ & \Leftrightarrow \sqrt{x+6}\ge x \\ \end{aligned} \)
+) Luôn đúng với \(x \in [-6;0]\)
+) Nếu \(x > 0\), ta có:
\(\begin{aligned} & x+6\ge {{x}^{2}} \\ & \Leftrightarrow {{x}^{2}}-x-6\le 0 \\ & \Leftrightarrow \left( x-3 \right)\left( x+2 \right)\le 0 \\ & \Leftrightarrow x\in \left[ -2;3 \right] \\ \end{aligned} \)
Vậy \(x\in \left[ -6;0 \right]\cup \left[ -2;3 \right] =[-6;3]\)
 
\(\begin{aligned} & g) \\ & {{2}^{2x-1}}+{{2}^{2x-2}}+{{2}^{2x-3}}\ge 448 \\ & \Leftrightarrow {{2}^{2x-3}}\left( {{2}^{2}}+2+1 \right)\ge 448 \\ & \Leftrightarrow {{2}^{2x-3}}\ge 64={{2}^{6}} \\ & \Leftrightarrow 2x-3\ge 6 \\ & \Leftrightarrow x\ge \dfrac{9}{2} \\ \end{aligned} \)
\(\begin{aligned} & h)\, \\ & {{16}^{x}}-{{4}^{x}}-6\le 0 \\ & \Leftrightarrow {{4}^{2x}}-{{4}^{x}}-6\le 0 \\ & \Leftrightarrow \left( {{4}^{x}}-3 \right)\left( {{4}^{x}}+2 \right)\le 0 \\ & \Leftrightarrow {{4}^{x}}-3\le 0\,\,\,\,\,\,\,\,\left( \text{vì}\,\,{{4}^{x}}+2>0\,\,\,\forall x \right) \\ & \Leftrightarrow x\le {{\log }_{4}}3 \\ \end{aligned} \)
 
\(\begin{aligned} & i) \\ & \dfrac{{{3}^{x}}}{{{3}^{x}}-2}<3 \\ & \Leftrightarrow \dfrac{{{3}^{x}}}{{{3}^{x}}-2}-3<0 \\ & \Leftrightarrow \dfrac{{{3}^{x}}-3\left( {{3}^{x}}-2 \right)}{{{3}^{x}}-2}<0 \\ & \Leftrightarrow \dfrac{-{{2.3}^{x}}+6}{{{3}^{x}}-2}<0 \\ & \Leftrightarrow \left[ \begin{aligned} & {{3}^{x}}>3 \\ & {{3}^{x}}<2 \\ \end{aligned} \right.\Leftrightarrow \left[ \begin{aligned} & x>1 \\ & x<{{\log }_{3}}2 \\ \end{aligned} \right. \\ \end{aligned} \)