Giải bài 4.28 trang 206 - SBT Giải tích lớp 12
Biết \(z_1\) và \(z_2\) là hai nghiệm của phương trình \(2{{x}^{2}}+\sqrt{3}x+3=0\). Hãy tính :
\(\begin{align} & a)\,z_{1}^{2}+z_{2}^{2} \\ & b)z_{1}^{3}+z_{2}^{3} \\ & c)z_{1}^{4}+z_{2}^{4} \\ & d)\dfrac{{{z}_{1}}}{{{z}_{2}}}+\dfrac{{{z}_{2}}}{{{z}_{1}}} \\ \end{align} \)
Áp dụng: Phương trình \(ax^2+bx+c =0\) có hai nghiệm \({{z}_{1}};{{z}_{2}} \) thì \(\left\{ \begin{aligned} & {{z}_{1}}+{{z}_{2}}=-\dfrac{b}{a} \\ & {{z}_{1}}.{{z}_{2}}=\dfrac{c}{a} \\ \end{aligned} \right. \)
Ta có: \({{z}_{1}}+{{z}_{2}}=-\dfrac{\sqrt{3}}{2};\,{{z}_{1}}.{{z}_{2}}=\dfrac{3}{2} \)
a) \(z_{1}^{2}+z_{2}^{2}={{\left( {{z}_{1}}+{{z}_{2}} \right)}^{2}}-2{{z}_{1}}{{z}_{2}}={{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}-2.\dfrac{3}{2}=\dfrac{3}{4}-3=-\dfrac{9}{4} \)
b) \(z_{1}^{3}+z_{2}^{3}={{\left( {{z}_{1}}+{{z}_{2}} \right)}^{3}}-3{{z}_{1}}{{z}_{2}}\left( {{z}_{1}}+{{z}_{3}} \right)={{\left( \dfrac{-\sqrt{3}}{2} \right)}^{3}}-3.\dfrac{3}{2}.\left( -\dfrac{\sqrt{3}}{2} \right)=\dfrac{15\sqrt{3}}{8} \)
c) \(z_{1}^{4}+z_{2}^{4}={{\left( z_{1}^{2}+z_{2}^{2} \right)}^{2}}-2z_{1}^{2}.z_{2}^{2}={{\left( -\dfrac{9}{4} \right)}^{2}}-2.{{\left( \dfrac{3}{2} \right)}^{2}}=\dfrac{9}{16} \)
d) \(\dfrac{{{z}_{1}}}{{{z}_{2}}}+\dfrac{{{z}_{2}}}{{{z}_{1}}}=\dfrac{z_{1}^{2}+z_{2}^{2}}{{{z}_{1}}{{z}_{2}}}=\left( -\dfrac{9}{4} \right):\left( \dfrac{3}{2} \right)=-\dfrac{3}{2}\)