Giải bài 3.17 trang 170 - SBT Đại số và Giải tích lớp 12

 Tính các tích phân sau bằng phương pháp đổi biến số:

a) \(\int\limits_{1}^{2}{x\left( 1-x \right)^5dx}\)    (đặt \(t=1-x\))

b) \(\int\limits_{0}^{ln 2}{\sqrt{e^x-1}dx}\)  (đặt \(t=\sqrt{e^x-1}\))

c) \(\int\limits_{1}^{9}{x\sqrt[3]{1-x}dx}\) (đặt \(t=\sqrt[3]{1-x}\))

d) \(\int\limits_{0}^{\pi}{\dfrac{x \sin x}{1+\cos^2 x}dx}\) (đặt \(x=\pi -t\))

e) \(\int\limits_{-1}^{1}{x^2\left( 1-x^3 \right)^4dx}\)

                                                                                   (Đề thi tốt nghiệp THPT năm 2008)

Lời giải:

a) Đặt \(t=1-x \Rightarrow dx=-dt\)

\(x=1\Rightarrow t=0\\x=2\Rightarrow t=-1\)

Ta có:

\(\begin{aligned} & \int\limits_{0}^{-1}{\left( 1-t \right){{t}^{5}}\left( -dt \right)}=\int\limits_{-1}^{0}{\left( {{t}^{5}}-{{t}^{6}} \right)dt} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\left( \frac{1}{6}{{t}^{6}}-\frac{1}{7}{{t}^{7}} \right)\left| \begin{aligned} & 0 \\ & -1 \\ \end{aligned} \right. \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=-\frac{1}{6}-\frac{1}{7} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=-\frac{13}{42} \\ \end{aligned} \)

b) Đặt \(t=\sqrt{e^x-1}\Rightarrow t^2=e^x-1\Rightarrow 2tdt=e^xdx=(t^2+1)dx \Rightarrow dx=\dfrac{2tdt}{t^2+1}\)

\(x=0\Rightarrow t=0\\x=ln2\Rightarrow t=1\)

Ta có:

\(\begin{aligned} & \int\limits_{0}^{\ln 2}{\sqrt{{{e}^{x}}-1}}dx=\int\limits_{0}^{1}{\frac{2{{t}^{2}}dt}{{{t}^{2}}+1}}=\int\limits_{0}^{1}{\left( 2-\frac{2}{{{t}^{2}}+1} \right)dt} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2t-2\arctan t\left| \begin{aligned} & 1 \\ & 0 \\ \end{aligned} \right. \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2-2.\frac{\pi }{4} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2-\frac{\pi }{2} \\ \end{aligned} \)

c) Đặt  \(t=\sqrt[3]{1-x}\Rightarrow t^3=1-x\Rightarrow dx=-3t^2dt \)

\(x=1\Rightarrow t=0\\x=9\Rightarrow t=-2\)

Ta có:
\(\begin{aligned} & \int\limits_{1}^{9}{x\sqrt[3]{1-x}dx} =-3\int\limits_{0}^{-2}{\left( 1-{{t}^{3}} \right){{t}^{3}}dt} =3\int\limits_{-2}^{0}{\left( {{t}^{3}}-{{t}^{6}} \right)dt} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =3\left( \frac{{{t}^{4}}}{4}-\frac{{{t}^{7}}}{7} \right)\left| \begin{aligned} & 0 \\ & -2 \\ \end{aligned} \right. \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=-\dfrac{468}7 \\ \end{aligned} \)
d) Đặt \(x=\pi -t\Rightarrow dx=-dt\)
\(x=0\Rightarrow t=\pi\\x=\pi\Rightarrow t=0\)
Ta có: 
\(\begin{aligned} & \int\limits_{0}^{\pi}{\dfrac{x \sin x}{1+\cos^2 x}dx}=- \int\limits_{\pi}^{0}{\dfrac{(\pi-t) \sin (\pi-t)}{1+\cos^2 (\pi-t)}dt}\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \int\limits_{0}^{\pi}{\dfrac{ (\pi-t) \sin t}{1+\cos^2 t}dt} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \int\limits_{0}^{\pi}{\dfrac{ \pi\sin t}{1+\cos^2 t}dt}- \int\limits_{0}^{\pi}{\dfrac{t\sin t}{1+\cos^2 t}dt} \\ \\ \end{aligned} \)
Suy ra 
\(\begin{aligned} & \int\limits_{0}^{\pi}{\dfrac{x \sin x}{1+\cos^2 x}dx}=\dfrac{\pi}{2}\int\limits_{0}^{\pi}{\dfrac{ \\sin x}{1+\cos^2 x}dx}\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\pi}{2}\int\limits_{0}^{\pi}{\dfrac{ -d(\cos x)}{1+\cos^2 x}dx} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\pi}{2}\int\limits_{-1}^{1}{\dfrac{ du}{1+u^2}} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \frac{{\pi}}{2}\left( \arctan u \right)\left| \begin{aligned} & 1 \\ & -1 \\ \end{aligned} \right. \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\pi^2}{4} \\ \\ \end{aligned} \)
e) Đặt \(t=1-x^3 \Rightarrow dt=-3x^2dx\,\, \text{hay}\,\,x^2dx=-\dfrac{dt}{3}\)
\(x=-1 \Rightarrow t=2\\x=1\Rightarrow t=0\)
Ta có: 
\(\int\limits_{-1}^{1}{{{x}^{2}}{{\left( 1-{{x}^{3}} \right)}^{4}}dx}=\dfrac{1}{3}\int\limits_{0}^{2}{{{t}^{4}}dt}=\dfrac{1}{15}{{t}^{5}}\left| \begin{align} & 2 \\ & 0 \\ \end{align} \right.=\dfrac{32}{15} \)