Giải bài 28 trang 205 SGK giải tích nâng cao 12

Viết các số phức sau dưới dạng lượng giác:

a) \(1-i\sqrt{3};1+i;\left( 1-i\sqrt{3} \right)\left( 1+i \right);\dfrac{1-i\sqrt{3}}{1+i};\)

b) \(2i\left( \sqrt{3}-i \right);\)

c) \(\dfrac{1}{2+2i};\)

d) \(z=\sin \varphi +i\cos \varphi \,\left( \varphi \in \mathbb{R} \right) \).

Lời giải:

Gợi ý: Số phức \(z=a+bi\) có dạng lượng giác \(z=r\left( \cos \varphi +i\sin \varphi \right)\), trong đó \(\left\{ \begin{align} & r=\sqrt{{{a}^{2}}+{{b}^{2}}} \\ & \cos \varphi =\dfrac{a}{r},\sin \varphi =\dfrac{b}{r} \\ \end{align} \right. \)

a) Ta có

\(1-i\sqrt{3}=2\left( \dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right)=2\left[ \cos \left( -\dfrac{\pi }{3} \right)+i\sin \left( -\dfrac{\pi }{3} \right) \right] \\ 1+i=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right)=\sqrt{2}\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right) \\ \)

Suy ra

\(\begin{aligned} \left( 1-i\sqrt{3} \right)\left( 1+i \right)&=2\sqrt{2}\left[ \cos \left( -\dfrac{\pi }{3}+\dfrac{\pi }{4} \right)+i\sin \left( -\dfrac{\pi }{3}+\dfrac{\pi }{4} \right) \right] \\ & =2\sqrt{2}\left[ \cos \left( -\dfrac{\pi }{12} \right)+i\sin \left( -\dfrac{\pi }{12} \right) \right] \end{aligned}\)

\(\begin{aligned} \dfrac{1-i\sqrt{3}}{1+i}&=\sqrt{2}\left[ \cos \left( -\dfrac{\pi }{3}-\dfrac{\pi }{4} \right)+i\sin \left( -\dfrac{\pi }{3}-\dfrac{\pi }{4} \right) \right] \\ & =\sqrt{2}\left[ \cos \left( -\dfrac{7\pi }{12} \right)+i\sin \left( -\dfrac{7\pi }{12} \right) \right] \end{aligned} \)

\(\begin{aligned} b)\, 2i\left( \sqrt{3}-i \right)&=2+2i\sqrt{3}=4\left( \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \right) \\ & =4\left[ \cos \left( \dfrac{\pi }{3} \right)+i\sin \left( \dfrac{\pi }{3} \right) \right] \\ \end{aligned} \)

\(\begin{align} c)\,\dfrac{1}{2+2i}&=\dfrac{1}{2}{{\left( 1+i \right)}^{-1}}\\ &=\dfrac{1}{2\sqrt{2}}\left[ \cos \left( -\dfrac{\pi }{4} \right)+i\sin \left( -\dfrac{\pi }{4} \right) \right] \end{align}\)

d) \(z=\sin \varphi +i\cos \varphi \)

\(\Rightarrow z=\cos \left( \dfrac{\pi }{2}-\varphi \right)+i\sin \left( \dfrac{\pi }{2}-\varphi \right)\)

Ghi nhớ:

Nếu \(z=r\left( \cos \varphi +i\sin \varphi \right) \\ z'=r'\left( \cos \varphi '+i\sin \varphi ' \right)\,\left( r\ge 0,r'\ge 0 \right) \)

thì \(zz'=rr'\left[ \cos \left( \varphi +\varphi ' \right)+i\sin \left( \varphi +\varphi ' \right) \right] \\ \dfrac{z}{z'}=\dfrac{r}{r'}\left[ \cos \left( \varphi -\varphi ' \right)+i\sin \left( \varphi -\varphi ' \right) \right] \)

Công thức Moa-vrơ

\({{\left[ r\left( \cos \varphi +i\sin \varphi \right) \right]}^{n}}={{r}^{n}}\left( \cos n\varphi +i\sin n\varphi \right)\)