Giải bài 27 trang 24 - SGK Giải tích lớp 12 nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:

\(a) f(x)=\sqrt {3-2x}\) trên đoạn \([-3;1];\)

\(b) f(x)=x+\sqrt{4-x^2}\)

\(c)f(x)=\sin ^4 x+\cos^2 x+2\)

\(d)f(x)=x-\sin 2x\) trên đoạn \(\left[\dfrac{-\pi}{2};\pi\right]\)

Lời giải:

a)

TXĐ: \(D=\left( -\infty ;\dfrac{3}{2} \right)\)

\(f'\left( x \right)=\dfrac{-2}{2\sqrt{3-2x}}=-\dfrac{1}{\sqrt{3-2x}}<0\,\,\forall x\in \left( -\infty ;\dfrac{3}{2} \right)\)

Ta có: \( f\left( -3 \right)=3;f\left( 1 \right)=1 \)

Vậy \(\underset{x\in \left[ -3;1 \right]}{\mathop{Max}}\,f\left( x \right)=3;\,\underset{x\in \left[ -3;1 \right]}{\mathop{Min}}\,f\left( x \right)=1\)

b)

TXĐ: \(D=\left[ -2;2 \right]\)

\(\begin{aligned} & f'\left( x \right)=1-\dfrac{2x}{2\sqrt{4-{{x}^{2}}}}=\dfrac{\sqrt{4-{{x}^{2}}}-x}{\sqrt{4-{{x}^{2}}}} \\ & f'\left( x \right)=0\Rightarrow \sqrt{4-{{x}^{2}}}-x=0 \\ & \Leftrightarrow \left\{ \begin{aligned} & x\in \left( 0;2 \right) \\ & 4-{{x}^{2}}={{x}^{2}} \\ \end{aligned} \right.\Leftrightarrow \left\{ \begin{aligned} & x\in \left( 0;2 \right) \\ & x=\sqrt{2} \\ \end{aligned} \right. \\ \end{aligned}\)

Ta có:

\(f\left( -2 \right)=-2;f\left( 2 \right)=2;f\left( \sqrt{2} \right)=2\sqrt{2}\)

Vậy \(\underset{x\in \left[ -2;2 \right]}{\mathop{Max}}\,f\left( x \right)=2\sqrt{2};\underset{x\in \left[ -2;2 \right]}{\mathop{Min}}\,f\left( x \right)=-2 \)

c)

TXĐ: \(D=\mathbb{R}\)

Ta có: \( f\left( x \right)={{\sin }^{4}}x+{{\cos }^{2}}x+2={{\sin }^{4}}x+1-{{\sin }^{2}}x+2={{\sin }^{4}}x-{{\sin }^{2}}x+3\)

Đặt \({{\sin }^{2}}x=t\,\,\left( 0\le t\le 1 \right)\)

Ta có: \(g\left( t \right)={{t}^{2}}-t+3\)

\(\begin{aligned} & g'\left( t \right)=2t-1 \\ & g'\left( t \right)=0\Leftrightarrow t=\dfrac{1}{2} \\ \end{aligned} \)

Ta có: \(g\left( 0 \right)=3;g\left( 1 \right)=3;g\left( \dfrac{1}{2} \right)=\dfrac{11}{14}\)
Vậy
\( \begin{aligned} & \underset{x\in \mathbb{R}}{\mathop{Max}}\,f\left( x \right)=\underset{t\in \left[ 0;1 \right]}{\mathop{Max}}\,g\left( x \right)=3 \\ & \underset{x\in \mathbb{R}}{\mathop{Min}}\,f\left( x \right)=\underset{t\in \left[ 0;1 \right]}{\mathop{Min}}\,g\left( x \right)=\dfrac{11}{14} \\ \end{aligned}\)

d)

\(D=\left[ \dfrac{-\pi }{2};\pi \right]\)

\(\begin{aligned} & f'\left( x \right)=1-2\cos 2x \\ & f'\left( x \right)=0\Leftrightarrow \cos 2x=\dfrac{1}{2} \\ & \Leftrightarrow \left[ \begin{aligned} & 2x=\dfrac{\pi }{3}+k2\pi \\ & 2x=-\dfrac{\pi }{3}+k2\pi \\ \end{aligned} \right.\Leftrightarrow \left[ \begin{aligned} & x=\dfrac{\pi }{6}+k\pi \\ & x=-\dfrac{\pi }{6}+k\pi \\ \end{aligned} \right.\,\,\left( k\in \mathbb{Z} \right) \\ \end{aligned}\)

Vì \(x\in D\Rightarrow f'\left( x \right)=0\Leftrightarrow \left[ \begin{aligned} & x=-\dfrac{\pi }{6} \\ & x=\dfrac{\pi }{6} \\ & x=\dfrac{5\pi }{6} \\ \end{aligned} \right.\)

Ta có:

\(\begin{aligned} & f\left( \dfrac{\pi }{6} \right)=\dfrac{\pi }{6}-\dfrac{\sqrt{3}}{2};f\left( -\dfrac{\pi }{6} \right)=-\dfrac{\pi }{6}+\dfrac{\sqrt{3}}{2};f\left( \dfrac{5\pi }{6} \right)=\dfrac{5\pi }{6}+\dfrac{\sqrt{3}}{2} \\ & f\left( \dfrac{-\pi }{2} \right)=-\dfrac{\pi }{2};f\left( \pi \right)=\pi \\ \end{aligned}\)

Vậy \(\underset{x\in D}{\mathop{Max}}\,f\left( x \right)=\dfrac{5\pi }{6}+\dfrac{\sqrt{3}}{2};\underset{x\in D}{\mathop{Min}}\,f\left( x \right)=-\dfrac{\pi }{2}\)