Giải bài 3.8 trang 165 - SBT Đại số và Giải tích lớp 12
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số
\(f(x)=\dfrac{1}{1+\sin x}?\)
a) \(F\left( x \right)=1-\cot \left( \dfrac{x}{2}+\dfrac{\pi }{4} \right)\)
b) \(G(x)=2\tan\dfrac{x}{2}\)
c) \(H(x)=ln(1+\sin x)\)
d) \(K(x)=2\left(1-\dfrac{1}{1+\tan\dfrac{x}{2}}\right)\)
Ta có:
\(\begin{align} & \int{\frac{1}{1+\sin x}dx}=\int{\frac{1}{{{\left( \sin \frac{x}{2}+\cos \frac{x}{2} \right)}^{2}}}dx} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\int{\frac{1}{2{{\sin }^{2}}\left( \frac{x}{2}+\frac{\pi }{4} \right)}dx} \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=-\cot \left( \frac{x}{2}+\frac{\pi }{4} \right)+C \\ \end{align} \)
Vậy \(F\left( x \right)=1-\cot \left( \dfrac{x}{2}+\dfrac{\pi }{4} \right)\)là một nguyên hàm của hàm số f(x).
\(G'(x)=\dfrac{1}{tan\dfrac{x}{2}}=\dfrac{cos\dfrac{x}{2}}{\sin\dfrac{x}{2}}=\dfrac{2cos^2\dfrac{x}{2}}{\sin x}\) nên G(x) không là nguyên hàm của hàm số f(x)
\(H'(x)=\dfrac{(1+\sin x)'}{1+\sin x}=\dfrac{\cos x}{1+\sin x}\) nên H(x) không là nguyên hàm của hàm số f(x).
\(\begin{align} & K'\left( x \right)=2.\dfrac{\left( 1+\tan \dfrac{x}{2} \right)'}{{{\left( 1+\tan \dfrac{x}{2} \right)}^{2}}}=2.\dfrac{\dfrac{1}{2{{\cos }^{2}}\dfrac{x}{2}}}{{{\left( \dfrac{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}} \\ & \,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{1}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}=\dfrac{1}{1+\sin x} \\ \end{align} \)
Vậy K(x) là một nguyên hàm của hàm số f(x).