Giải bài 4.38 trang 208 - SBT Giải tích lớp 12

Tìm số phức z, biết:
\(\begin{align} & a)\overline{z}={{z}^{3}} \\ & b)\left| z \right|+z=3+4i \\ \end{align} \)

 

Lời giải:
Gọi số phức \(z=a+bi,\,\,\,a,b\in \mathbb{R} \)
 
\(\begin{aligned} & a)\overline{z}={{z}^{3}} \\ & \Leftrightarrow a-bi={{\left( a+bi \right)}^{3}} \\ & \Leftrightarrow a-bi={{a}^{3}}+3{{a}^{2}}bi+3a{{b}^{2}}{{i}^{2}}+{{b}^{3}}{{i}^{3}} \\ & \Leftrightarrow a-bi={{a}^{3}}-3a{{b}^{2}}+\left( 3{{a}^{2}}b-{{b}^{3}} \right)i \\ & \Leftrightarrow \left\{ \begin{aligned} & a={{a}^{3}}-3a{{b}^{2}} \\ & -b=3{{a}^{2}}b-{{b}^{3}} \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & \left\{ \begin{aligned} & a=0 \\ & -b=-{{b}^{3}} \\ \end{aligned} \right. \\ & \left\{ \begin{aligned} & 1={{a}^{2}}-3{{b}^{2}} \\ & -b=3{{a}^{2}}b-{{b}^{3}} \\ \end{aligned} \right. \\ \end{aligned} \right.\Leftrightarrow \left[ \begin{aligned} & \left\{ \begin{aligned} & a=0 \\ & \left[ \begin{aligned} & b=0 \\ & b=\pm 1 \\ \end{aligned} \right. \\ \end{aligned} \right. \\ & \left\{ \begin{aligned} & {{a}^{2}}=1+3{{b}^{2}} \\ & -b=3\left( 1+3{{b}^{2}} \right)b-{{b}^{3}} \\ \end{aligned} \right. \\ \end{aligned} \right. \\ & \Leftrightarrow \left[ \begin{aligned} & \left\{ \begin{aligned} & a=0 \\ & \left[ \begin{aligned} & b=0 \\ & b=\pm 1 \\ \end{aligned} \right. \\ \end{aligned} \right. \\ & \left\{ \begin{aligned} & {{a}^{2}}=1+3{{b}^{2}} \\ & 8{{b}^{3}}+4b=0 \\ \end{aligned} \right. \\ \end{aligned} \right.\Leftrightarrow \left[ \begin{aligned} & \left\{ \begin{aligned} & a=0 \\ & \left[ \begin{aligned} & b=0 \\ & b=\pm 1 \\ \end{aligned} \right. \\ \end{aligned} \right. \\ & \left\{ \begin{aligned} & a=\pm 1 \\ & b=0 \\ \end{aligned} \right. \\ \end{aligned} \right. \\ \end{aligned} \)
Vậy \(z\in \{0;1;-1;i;-i\}\)
 
\(\begin{aligned} & b)\left| z \right|+z=3+4i \\ & \Leftrightarrow \sqrt{{{a}^{2}}+{{b}^{2}}}+a+bi=3+4i \\ & \Leftrightarrow \left\{ \begin{aligned} & \sqrt{{{a}^{2}}+{{b}^{2}}}+a=3 \\ & b=4 \\ \end{aligned} \right. \\ & \Leftrightarrow \left\{ \begin{aligned} & \sqrt{{{a}^{2}}+16}=3-a \\ & b=4 \\ \end{aligned} \right. \\ & \Leftrightarrow \left\{ \begin{aligned} & a<3 \\ & {{a}^{2}}+16=9-6a+{{a}^{2}} \\ & b=4 \\ \end{aligned} \right. \\ & \Leftrightarrow \left\{ \begin{aligned} & a=-\dfrac{7}{6} \\ & b=4 \\ \end{aligned} \right. \\ \end{aligned} \)
Vậy \(z=-\dfrac 7 6 +4i\)